
HH<f)0pMauH0Ji0riiHecKHX pecypcoB;
HH^IOpMaiiHOJIOrHHeCKHX TCXHOJIOrHH;
HH^opMauHOJiorHHecKHx TexHOJiorHii;
HHcj)opMaiinojiorHi-iecKHx pe3yjibTaTOB;
HH(J)opMaxiHOJiorHHecKoro SKcnepHMeHTa;
HHijjopMauHOjiorHMecKHx H^eS h mcto^ob/ HHTejuieKTa/;
HHtfjOpMaiiHOJlOrHHeCKOH HHTejIJICKTyajIbHOH bohhbi;
HH^opMaiiHOiiorHHecKoro HHTejijieKTyajibHoro m m a rocyAapcTBa;
HH(|)0pMauH0ji0r0- aHeprcTHMecKHx TexHOJionra;
HHtfiOpMailHOJIOrHHeCKHX KOMnbKyrepHbIX TeXHOJIOrHH;
HHt^OpMaitHOJTOrHHeCKHX TeXHHHeCKHX Cpe^CTB;

HH(|)opM aiiHO Jioro- npaBOBOH ^e^TejibHOCTH;
HH(|)OpMaUHOJIOrHl ieCKHX 3HaHHH B KHHraX;
e^HHOrO MHpOBOrO HH(J}OpMaiJHOHHO- COTOBOrO npOCTpaHCTBa.

K jia c c m fw K a u n ii HHc^opMauHOjioriiHecKHX cH creM KOHrpojiii h ynpaB JieH H a n o K b B H in im y
n03B0JiaeT npe^CTaBHTb rjioSajibH O 3aaaHH aHajiH3a h CHHTesa c u;eiibK) n o jiy n e H H a 3(j}(J)eKTHBHbix,
KanecTBeHHO hobhx h oiroiMajibHbix cjiohchbix chctcm.

c r r a c o K jM TEPATypw

1.Ky3bMHHH.B. Oiieinca3(J)(l)eKTiiBH0C'ni h oriTHMH3auji5i ACKY. - M.: - CoBercKoe pâ Ho, 1971. -296 c.

2. K)3bhiiihh H.H. Ochob HH(J)opMamiojiorHH, - M.: Bbicmaa nncona, 2000. -517 c.

A. Tsakonas, C. Papadopoulos, G. Dounias (Greece, Chios)

CALCULATION OF THROUGHPUT FOR PRODUCTION LINES WITH BUFFERS

USING COMPUTATIONAL INTELLIGENCE

Introduction
The domain o f serial production lines lacks the existence of general formulas for acquiring useful

measurements and line characteristics, such as throughput. Throughput is called the average number of
jobs per hour that can flow through a production line. The obvious complexity o f the domain, due to
combinatorial explosion, depends on the number of workstations involved in the examined line, the
capacity o f buffers existing within the workstations, the variability in processing times, etc. The authors
attempt to approximate this problem by applying modern genetic programming techniques [Koza 1992],
[Koza 1994], [Angeline et. al 1996], in other words creative programming techniques that belong to the
area of computational intelligence and learning. Genetic programming is an automated method for
creating a working computer program from a high-level problem statement o f the problem. The
evolutionary' search adopted, uses the Darwinian principle o f survival o f the fittest and is patterned after
naturally occuring operations, including crossover (i.e. sexual recombination), mutation, gene duplication,
gene deletion, etc. The objective o f this work, is to obtain an analytical formula for throughput x, in terms
of the abovementioned production line parameters (i.e. o f the number of stations, size o f buffers, mean
processing time), assuming there are sufficient jobs at the beginning o f the line to ensure that the first
station is never starved of jobs and that the last station is never blocked. Through this paper, different
formulas are given for each size o f short production lines with respect to their line length, and then, an
additional attempt is described and analyzed for unifying all the throughput formulas obtained during the
initial approach. The formulas obtained are quite long but easily programmable in a single line o f source
code, and thus very useful for immediate use in real world applications.

The problem
A AT-station production line with K -l intermediate buffers is a system in which, each part enters the

system from the first station, passes in order from all the stations and the intermediate buffer locations,

and exits the line from the last station. If a station has completed its processing and the next buffer has
space available, the processed part is passed on and the station starts processing a new part that is taken
from its input buffer. If the buffer has no parts, the station remains empty, until a new part is placed in the
buffer. This process causes the well-known phenomenon of blocking and starving in manufacturing.

Figure 1: A serial production line (K-stations and K -l buffers)

The whole system operates under the assumption that the first station is never starved and the last
station is never blocked. The processing (service) times at each station are assumed to be independent
random variables following the exponential distribution, with mean service rates, i = 1,2.... K.
Breakdowns in the line stations are not allowed in this model. Figure 1 represents a K-station line having
K-l intermediate locations for buffers, whose capacity is denoted as C2, C3 CK. The basic
performance measures in the analysis of production lines arc the mean production rate or ‘‘throughput”
and the average work-in-progress (WIP) or equivalently the average production time. The object of the
present work is to identify the line’s throughput for various intermediate buffer sizes {i.e., N = 0,1.2,3,4),
when mean processing time varies from 0.98 to 1.02 and the line is considered short, that is K = 2, 3, ...,
10. Note that the number of feasible allocations of N buffer slots among the K-l intermediate buffer
locations, increases dramatically with N and K.

The standard method for approximating the mean throughput of a serial production line at any
given conditions, is the decomposition method described, among others, by [Dallery & Frein, 1993], The
decomposition method gives the throughput for any K-station line with finite intermediate buffers of
capacity C, and exponentially distributed processing times (MO'1. In decomposition methods, the
queueing network is decomposed into a set of smaller subsystems. Several decomposition methods have
been proposed in literature with respect to limitations such the type of service times, the way the
subsystems are characterized and the way the unknown parameters are determined. All of these
decomposition approaches characterize the subsystems, then derive a set of equations to determine the
unknown parameters of each subsystem, and finally derivate an algorithmic procedure for solving this set
of equations and thus for determining the unknown parameters of all subsystems. Then the performance
of each subsystem can be calculated and an approximation of the performance of the original system can
be provided. Decomposition algorithms and techniques offer adequate and reliable solutions in practice,
but presuppose the existence of computer assist to the production engineer in order to be able to
dynamically set up the production line in the optimal way. The provision of unified formulas for
obtaining the line’s throughput at any conditions instead of applying decomposition algorithmic
approaches is useful and desirable.

Methodology
To identify approximate generalized formulas for calculating the throughput of short serial

production lines with intermediate buffers the methodological steps given below were followed for each
value of number of workstations K:

If K=2,3>4: (STEP Al): Identify exhaustively all the exact throughput values for this K, using the
decomposition algorithm approach, (STEP A2): Initiate an iterative application of a genetic programming
scheme in the full data set acquired from Step Al, to obtain an approximate formula containing basic
algebraic operation, (STEP A3): Stop the genetic programming process, w’hen all the parameters for the
examined K have been used and the generated formula exceeds 99.9% accuracy (i.e. mean difference
among decomposition and approximation values is lower than 0.01%)

If K=5,6,..,10: (STEP Bl): Apply special sampling techniques for selecting the most representative
set of data for the task of “learning” performed through genetic programming, (STEP B2): If complexity
of the search space remains extremely high, reduce the representative values of the set of alternative mean
processing time values, (STEP B3): Initiate an iterative application of a genetic programming scheme in

IS
:ll
ie

1st
:nt
K.
ng
sic
it”
:he
4 \

¥er

my
The
of

the
ave
the
iese
the
set

nee
can
.ice,
? to
for

mic

erial
sach

; the
ning
jasic
rthe
ence

ative
exity
nean
ne in

the reduced data set acquired from Steps B1 (and B2), in order to obtain an approximate formula
containing basic algebraic operations, (STEP B4): Accept or reject the obtained formula with respect to
its overall accuracy, not only in the sampling data but in the whole data set for the given K. If the formula
obtained is rejected then go back to Step Bl, else proceed with the next value of K.

If K>10, Complexity of such a serial production line becomes a difficult barrier to overcome with
currently existing genetic programming approaches.

Genetic programming based approximation
Genetic and evolutionary algorithms are used in various domains where a direct search method (e.g.

backpropagation in neural networks) cannot be applied due to the nature of the problem. The main
disadvantage of a genetic algorithm from the point of developing complex functions is the lack of
representation [Koza 1992], With genetic algorithms, a coding scheme for a fixed-length string must be
used, which is a selection constraining the "size" of a solution. When the type of the "near-optimal"
solution is not known a-priori, the coding prevents the solver of the exploration of areas of the solution
space, which may have better performance. Therefore, for more complex systems, an encoding in a
hierarchical expression is required.

This need has led research in the development of genetic programming. When applying genetic
programming, much of the theory of genetic algorithms is followed. The basic difference is the form of
representation of the structures used, which resembles more than a variable-length tree, than a fixed
string. In genetic programming, a population of random trees is initially generated, representing
programs. Then, the genetic operations (crossover, mutation etc.) are performed on these trees. In order to
create a population, a function set F and a terminal set T is primarily defined. Notice that, the terminal set
may contain both, variables and constants. These functions must be able to pass information between each
other. The term describing this need is called closure achievement.

In order to create a random tree, we usually select randomly from T u F, until all tree branches end
in terminals. However, more advanced techniques on the creation of the initial application have been
developed [Langdon 1996] [Koza 1992, [Koza 1994], and these are followed in the implementation of
this work. There are generally, four types of operators in genetic programming: crossover, mutation,
reproduction and inversion. Crossover and reproduction are considered [Koza 1994] the most important
operations. However, under recent development it is suggested [Angeline et. al. 1996] that special types
of mutation may offer better search in the solution space. After considering the initialization of a random
population and the operators selection, the next step is to determine a fitness function, which will be used
for the evaluation of the candidate solutions, and therefore for the selections of the individuals for the
crossover and other operations. Actually, as with genetic algorithms, the fitness function, works
separately than the whole genetic procedure, enabling this way the independence of the algorithm. The
genetic programming process followed in our work is given through five steps:

(1) Create a random population of programs using the symbolic expressions provided, (2) evaluate
each program assigning a fitness value according to a pre-specified fitness function, which actually
corresponds to the ability of the program to solve the problem, (3) use reproduction techniques to copy
existing programs into the new generation, (4) recombine genetically the new population with the
crossover function from a randomly based chosen set of parents (5) repeat steps 2-4 until termination
criterion has been achieved.

In order to be able to evaluate a program without error (to achieve closure) it is necessary the
symbolic expressions operated by the genetic programming mechanism be compatible. Therefore in order
to avoid division by zero during the evaluation process, “standard division” was substituted by “protected
division”. As an initial step in our experiments, to ensure sufficiency, the four basic functions were
selected for the considered function set F={+,-,/,*}, intending in future work to enhance it with more non­
linear functions such as tanh, square and cubic root, etc. While a lot of experimentation may be
accomplished in this domain, the authors applied crossover 70 % of time, mutation 20% of time, and
straight copy 10% of time. The crossover used is a sub-tree crossover.

Results
For the calculation of throughput by the decomposition method, the parameters set to create the

genetic procedure train set like convergence criterion, first buffer;s capacity, etc., were carefully chosen.
It is worth to note here that the evolving of the derived data set is exponential. Therefore, as it is

made clear that the data set derived for number of stations greater than four (4), limits the genetic process,
while the train set becomes too large to be handled by present technology. This is the reason why
MCCS-2001 13

sampling techniques are proposed to handle the throughput approximation, for the case of five (5) or more
workstations of a serial production line with intermediate buffers and exponential service times.
Specifically, a solution in this problem could be the sampling by changing the calculation interval (e.g.
0.02 for station service instead of 0.01), losing this way precision on the resulting formula but making the
computation possible. In all cases, the abovementioned ranges are considered, which are for station
service rates from 0.98 to 1.02 and for buffer capacities from 0 to 4. It is easily observed that under this
fixed sampling, the possibility of learning is reduced when the number of stations is increased, while the
train data set contains even smaller proportions of the original set. However, the above formulas offer a
sufficient function approximation, by providing accuracy higher than 99.99% for the training values used,
and therefore may be considered as near-optimal solutions.

For two (2) workstations, i.e., K=2, after ~200,000,000 iterations, and having average square error
of 10‘7, the following formula was obtained:

Special conditions apply on this formula, like, (a) If C2=6 => C2-6=l (not a realistic possibility), (b)
if C2=0 =>M]2 / C2 = 1 and also (127*Mi/C2)=l (division by zero), (c) the complex algebraic quantity-
existing on the enumerator, when divided by C2=0 is also substituted by the value of 1. For three (3)
workstations, i.e. K=3, after 7,788,000 iterations, and having sum sq. error o f -0.378532 the following
formula was obtained:

The reader should have in mind that special conditions apply on this formula too as a result of the
definition of the division by zero.

For four (4) workstations, i.e. K=4. after 117009 iterations and with a sum sq. error o f
approximately -17.0066, the formula obtained is

For two (2), three (3) or four (4) workstations, after 87342 iterations and with a sum sq. error of
approximately -25.4467 (mean accuracy again exceeds 99.99%), the formula obtained is (K denotes
number of stations):

Other accurate formulas applied only for limited length of short production lines (K=2, 3) or
referring to equal buffering, have been given in past literature for the studied problem, from [Muth &
Alkaff 1986], [Muth 1984, 1987], [Blumenfeld 1990], [Hunt 1956], [Martin 1993],

Discussion and further work
The problem addressed in this work, was a symbolic regression application in the throughput rate

calculation of short exponential production lines with finite intermediate buffers. This domain consisted
of a highly complex search space. The applied genetic programming technique, although it achieved to
find near-optimal solutions, it didn't manage yet to reveal accurate generalized formulas. The training set

1 Formula Trials for K=2: (a) If M l=0.98, M2=0.98, C2=4 then DECO gives x = 0.84 and our formula estimates throughput rate
x.= 0.8411701 , (b) I fM l= l, M 2=l, C2=l then DECO gives x = 0.75 and our formula estimates throughput rate x = 0.7496624

X3=(((l-((22-C2)/51))-((C2(M3+C3))*(M2-88*C2)))+

+(2*C3/(C3*C3-((11 l/((Ml/C3)+((C3/(2*C3*C3))+C3)))-87))))

X4=((((((M3/(-99*C2/(79*C3+126*C4+84))/C3)-C4)/C4)-

-(C3+C4-M3+43))/(2*C2+C3-Ml-M2-75))

X2,3,4= (((C2+(2 * C3)+5 8-(2 *M3))/(((M 1 -C2)+(102+(M4/((60/

/((115 *M 1) * (M1 +C2)-(M2/(M4-103))))-C3))))+(((C2/M2)/((((M3+

+16)/M1)/(((C2+2*C3-2*M3+58)*(C4/M4))-(C3+11-K)))--M1))/C2)))

+((((C4/M4)/18)*(M4-Ml-47))/(Ml/(M4-64)-44)))

re
s.
g-
le
Dn
lis
he
■ a
'd,

■or

(b)
titv

(3)
ing

the

‘ o f

>r of
otes

5) or
th &

t rate
¡isted
ed to
ig set

it rate
>624

2001

included all possible combinations for a given parameter range. Thus, the algorithm was restricted to
solve only problems with 4 or less stations, while the training set was increased exponentially. For more
stations, sampling techniques were proposed. However, the recent acquired formulas reached more than
99% accuracy and they can be easily implemented in a software program. These formulas have not any
significant resemblance with other respective formulas obtained by previous works. This result, may be
due to the fact that, for a specified training set, a large number of non-linear approximation functions
exist, which would satisfy even the highest desired accuracy. Moreover, the obtained formulas often need
special translations and application treatment, while the division operator is actually a modified version of
the common division, known in the literature as "protected division". The authors currently focus towards
a decomposed symbolic regression approach, which could possibly reveal similarities in the throughput
formulas of slightly different production lines, and thus offer significant conclusions for a generalized
formula.

REFERENCES

1. [Dallery & Frein, 1993] Dallerv Y. and Frein Y., "‘On decomposition Methods for Tandem Queueing Networks with
Blocking”, in Operations Research, 41:(2). pp. 386-399

2. [Angeline et al. 1996] Angeline P. J. and Kenneth Kinnear, Jr. E.. "Advances in Genetic Programming", Vol.2, Tire MIT
Press, 1996

3. [Koza 1994] Koza .T. R., "Genetic Programming II - Automatic Discovery o f Reusable Programs". The MIT Press

4. [Koza 1992] Koza J. R., "Genetic Programming - On the Programming of Computers by Means o f Natural Selection", The
MIT Press

5. [Langdon 1996] Langdon W. B., "Data Structures and Genetic Programming", in P. J. Angeline and K. E. Kinnear Jr.,
"Advances in Genetic Programming", Vol.2, pp.395-414. The MIT Press.

6. [Martin 1993] Martin G. E., “Predictive Formulae for Unpaced Line Efficiency”, Int. Jour, o f Prod. Research, Vol. 31, No. 8,
pp. 1981-1990.

7. [Hunt 1956] Hunt G. C., “Sequential Arrays o f Waiting Lines”, Operations Research, 4, pp. 674-683.

8. [Muth & Alkali' 1986] Muth E. J. and Alkaff A., “The Throughput Rate of Three-Station Production Lines, a Unifying
Solution”, Research Report No. 86-12, Univ. o f Florida, Dept, o f Industrial and Systems Engineering, Gainsville, Fla, USA.
(also appeared in the Int. Jour, o f Prod. Research).

9. [Muth 1984] Muth E. J., “Stochastic Processes and Their Network Representations Associated with a Production Line
Queueing Model”, European Journal o f Operational Research, 15, No. 1, Jan. 1984, pp. 63-83.

10. [Muth 1987] Muth E. J. “An Update on Analytical Models o f Serial Transfer Lines”, Research Report No. 87-15, Univ. of
Florida, Dept, o f Industrial and Systems Engineering, Gainsville, Fla, USA.

11. [Blumenfeld 1990] Blumenfeld D.E., “A Simple Formula for Estimating Throughput o f Serial Production Lines with
Variable Processing Times and Limited Buffer Capacity”, in Int. J. o f Prod. Res., 28, pp. 1163-1182.

YAK 681.3:62-52

B. |Hy6oBHH, O. TjioHb (YKpaiHa, BiHHuun)

IIEPETB O PEH H fl HEHITKHX £A H H X AHHAM IHHOK) CHCTEM OK)

HacTO Ha eTani npoeKTVBaHH» Ta c})yHKmoHyBaHH5i aBT0MaTH30BaH0i cucreMH ynpaBjiiHHa,
ocoGjihbo memo flo ii denary Bxo£>iTb HeniTKi KompojiepH, Ha ii Bxm no#aK>Tbca H enrra CHraaJiH, uio
3aflaK3Ti>c}i (jn'Hicmeio Ha.ie>KHOCTt. J3,jih npoeicryBaHHH Ta .nocjiwaceHHii TaKHX tcxh ihhux chctcm
HeooxtflHO po3B’$i3aTH 3aAaHy 3HaxoxpKeHHa (jwHicmi Hajie>KHOCTi BHxi^Horo CHrHa.iv, aicmo bi^omi
<i>yHKt(ia Hajie>KHOCTi BxizjHoro CHraajiv Ta tMny.ibCHa nepexiAHa (JjyHKuia aHHaMiHHoro nepeTBoproBaHa
PHC. 1.

MCCS-2001 15

